Overview of hot topics in flow cytometry including MRD in acute leukemia

ISLH
Milan, May 2016
MC Béné
• No conflicts of interest
Morphology & Flow cytometry

- Settled technologies
- Somehow taken for granted…
- Yet, getting more and more automated
 - Digitalized imaging
 - HIV follow-up
 - CBC instruments
Flow cytometry
still a multifaceted versatile tool

- **Instruments**: 4 to 12 parameters and growing
- **Antibody combinations**
 - Lab-based
 - Many consensus-based proposals
 - Financial limitations
 - Recruitment-based limitations
 - Commercial solutions
 - Custom-made panels
 - Ready-to-use mixes
 - Liquid (vials)
 - « Dry » tubes
- **Analysis software**
 - Imagination rules!
Bone marrow cartography
Arnoulet et al. Cytometry B 2009

- Identification of mature cells
- Boolean definition of progenitors:
 - « NOT lymphocytes AND NOT monocytes AND NOT granulocytes »
- GTLLLF « bermudes »
The CD45 scattergram
STANDARDIZATION
HARMONIZATION
Euroflow: the idea

- Standardize instruments
- Find the best antibodies
- Fix panels

- Overall a good idea
- A lot of work
- A lot of money

Van Dongen et al, 2012, Leukemia
Pros and cons

- Comprehensive of most hematological malignancies
- Some good display ideas
- Files merge for comparison

- Complex backbones
- Complex displays
- Blackbox of the PCA analysis and APS presentation
- Expensive to apply
Comprehensive Berlin handout 2009 Final version 2012
A lot of markers
an interesting display
Confusing representations
HARMONEMIA

• A universal strategy for comparing flow cytometry immunophenotyping data obtained from instruments of different make

• Lysed unstained blood: no more than 15-20% cells in the first channel for each color → determination of PMT voltages

Lacombe et al, 2016, Leukemia
Unlabeled cells
Normalized target channel for beads on 23 instruments
Merging example

Next step: atlas of 8/10 colors normal bone marrow
Routine samples in 22 configurations

PMN CD11b

A

Navios 10C

Navios 8C

Canto II 8C

Mo CD11b

B

Navios 10C

Navios 8C

Canto II 8C

PMN CD16

C

Navios 10C

Navios 8C

Canto II 8C

Mo CD33

D

Navios 10C

Navios 8C

Canto II 8C
ACUTE LEUKEMIA AND MINIMAL RESIDUAL DISEASE

Pubmed ~2900 papers
+Flow cytometry ~600 papers
Flow cytometry and acute leukemia

- Essential for diagnosis/classification
 - Lineage assignment and blockade stage
 - AML with minimal differentiation
 - Myelomonocytic lineage
 - MPAL (mixed phenotype acute leukemia)

- Morphology and flow cytometry for rapid early orientation of patients’ management

- Follow-up: MRD
How to find the « bad » cells?

The candy jar concept

- Morphology
- Cytogenetics
- Flow cytometry
- Molecular probes

Clinical relevance

- Size
- Shape
- Colour
- Smell
- Taste
General principles

• Specificities of acute leukemia
 – Constant medullary involvement
 – Frequent peripheral involvement
 – Fast evolution
 • Of the disease
 • Of answer to therapy
 • Of relapses

• Cellular specificities
 – Molecular (DNA, RNA)
 – Immunophenotypic : leukemia associated immunophenotype LAIP
Immunophenotypic detection of MRD

- Immunophenotypic anomalies of blasts
 - Aberrant expression on leukemic cells
 - Decreased expression
 - Hyperexpression
 - Asynchronism
 - Lineage infidelity
 ➔ Notion of Leukemia Associated ImmunoPhenotype (LAIP)
 - Immunophenotypes absent on normal cells
 ➔ Notion of « empty gate»
Recent american survey
Keeney et al. 2016, Arch Pathol Lab Med

- Questionnaire to 549 laboratories
- 500 answers (91%)
Threshold?

• In this survey: 10^{-3} to 10^{-5}
 – ???
 – Number of cells counted?
 – Number of parameters?
 – Expected population of abnormal cells?
 • 10? 20? 50?
 • None!?
Limits of MRD detection

- Appropriate diagnostic panels
- Fresh cells
- Number of cells available
 - Necessary limited in aplastic patients
 - Conditions sensitivity (clusters)
 - Conditions the number of informative combinations
- Remain pragmatic!
 - $10^{-4} = 1/10000$ cells = 10/100000
The phases of MRD

The graph illustrates the number of leukemic cells over time since the start of therapy. The phases include Induction, Consolidation/Transplantation, Maintenance, Relapse, CR, MRD, and Cure. The red line represents the number of leukemic cells decreasing during Induction and Maintenance, while the green line shows a subsequent increase during Relapse before decreasing again towards cure.
Application to peripheral blood in AML induction

Lacombe et al, 2009, Leukemia
Sequential daily assessment

1 log decrease : 90% BDR
Prognostic value
Also stratifies intermediate risk cytogenetics

Karyotype I

Karyotype N
Diagnosis D0

Applicable to automated flow

Hematoflow®
Chemotherapy D1
Chemotherapy D2
Chemotherapy D3
Chemotherapy D4

![Flow cytometry scatter plot and table data]

<table>
<thead>
<tr>
<th>Color</th>
<th>Name</th>
<th>% Gated</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyan</td>
<td>Lymph. B</td>
<td>51.67</td>
<td>10307</td>
</tr>
<tr>
<td>Blue</td>
<td>T-</td>
<td>19.11</td>
<td>3012</td>
</tr>
<tr>
<td>Green</td>
<td>T+</td>
<td>2.28</td>
<td>454</td>
</tr>
<tr>
<td>M-</td>
<td>0.60</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>M+</td>
<td>0.40</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Lymph. T&NK</td>
<td>21.39</td>
<td>4268</td>
<td></td>
</tr>
<tr>
<td>Lymph. Total</td>
<td>73.06</td>
<td>14573</td>
<td></td>
</tr>
<tr>
<td>Mono. Total</td>
<td>0.99</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Imm. Gran</td>
<td>0.30</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Eosino. Total</td>
<td>14.36</td>
<td>2684</td>
<td></td>
</tr>
<tr>
<td>Neutro. Mature</td>
<td>10.70</td>
<td>2134</td>
<td></td>
</tr>
<tr>
<td>Neutro. Total</td>
<td>10.99</td>
<td>2193</td>
<td></td>
</tr>
<tr>
<td>Xb</td>
<td>0.05</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Xi</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>XM</td>
<td>0.03</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Xn</td>
<td>0.90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Beso. Total</td>
<td>0.02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Diff</td>
<td>100.00</td>
<td>19947</td>
<td></td>
</tr>
</tbody>
</table>
MRD IN ACUTE LYMPHOBLASTIC LEUKEMIA
First studies in the early 1990s

Empty spaces of normal bone marrow
Gaipa G et al. 2013, Cyometry B
Fossat et al. 2015, Cytometry B
Karawajew et al. 2015 Haematologica

<table>
<thead>
<tr>
<th>CD58</th>
<th>CD10</th>
<th>CD19</th>
<th>CD34</th>
<th>CD22</th>
<th>CD20</th>
<th>Syto41</th>
<th>CD45</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD38</td>
<td>CD10</td>
<td>CD19</td>
<td>CD34</td>
<td>CD22</td>
<td>CD20</td>
<td>Syto41</td>
<td>CD45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Correlation with PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD58 10^{-4}</td>
<td>80.0</td>
<td>94.4</td>
<td>88.1%</td>
</tr>
<tr>
<td>CD38 10^{-4}</td>
<td>88.1</td>
<td>95.1</td>
<td>91.3%</td>
</tr>
</tbody>
</table>
Regenerating bone marrow: normal spaces, changed proportions

Karawajew et al, 2015, Haematologica

Van Dongen et al, 2015, Blood
Incidence on outcome

Basso et al, 2009, JCO

- 815 Patients Day 15

Eveillard et al, 2015, Hem Oncol

- 123 Patients Day 21

- pos-pos: p=0.0001
- pos-neg: p=0.0001
- neg-neg: p<0.0001
Pui et al. 2015
MRD driven therapy D19
MRD IN ACUTE MYELOBLASTIC LEUKEMIA
MRD and prognosis of MRD in AML

Kern et al. *Blood* 2004

Perea et al. *Leukemia* 2006

Figure 2 Prognostic value of a 0.1% cutoff value of MRD assessed by FC in AML with t(8;21) and inv(16). Cumulative incidence of relapse according to MRD detected by FC at the end of chemotherapy treatment.
HOVON experience
Terwijn M et al. JCO, 2013

Screening panel

<table>
<thead>
<tr>
<th>CD34</th>
<th>CD22</th>
<th>CD45</th>
<th>CD117</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD15</td>
<td>CD13</td>
<td>CD45</td>
<td>CD14</td>
</tr>
<tr>
<td>DR</td>
<td>CD33</td>
<td>CD45</td>
<td>CD11b</td>
</tr>
<tr>
<td>CD2</td>
<td>CD56</td>
<td>CD45</td>
<td>CD7</td>
</tr>
<tr>
<td>CD36</td>
<td>CD133</td>
<td>CD45</td>
<td>CD19</td>
</tr>
</tbody>
</table>

Mature blasts: CD117
Overexpression: CD14
Lack: CD11b
Cross-lineage: CD7
Asynchronous: CD19
Molecular MRD status provides the most powerful prognostic factor in NPM1 mutant AML

In multivariate analysis MRD status was only significant independent prognostic factor, considering:
- Age
- WBC
- Mutational profile (51 gene panel including \(FLT3\)-ITD, \(DNMT3A\), \(WT1\))

Immunophenotypic complexity

CD34
CD117
CD33
CD13
MRD a new strategy for AML

Boolean equation established at diagnosis

\[
\text{MRD} = \text{NOT A} \land \text{NOT B} \land \text{NOT C} \land \text{NOT D} \land \text{NOT E} \land \text{NOT F}
\]
Diagnosis
Importance of the notion of cluster

Diagnosis

MRD1 5%
Diagnosis

MRD1 5×10^{-3}
Diagnosis

Negative MRD1
Incidence on outcome

C

Disease free survival

<table>
<thead>
<tr>
<th>MRD level</th>
<th>Median (95%CI) months</th>
<th>% ±SE at 36 months</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><5x10^5</td>
<td>Not reached</td>
<td>75.7 ± 3.5</td>
<td></td>
</tr>
<tr>
<td>≥5x10^5-5x10^4</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>≥5x10^4-5x10^3</td>
<td>18 (8-35)</td>
<td>16.7 ± 8.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥5x10^3-5x10^2</td>
<td>11 (7-15)</td>
<td>11.2 ± 34</td>
<td></td>
</tr>
<tr>
<td>≥5x10^2</td>
<td>4 (0-6)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Overall survival

<table>
<thead>
<tr>
<th>MRD level</th>
<th>Median (95%CI) months</th>
<th>% ±SE at 36 months</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><5x10^5</td>
<td>Not reached</td>
<td>81.4 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>≥5x10^5-5x10^4</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>≥5x10^4-5x10^3</td>
<td>26 (18-40)</td>
<td>42.3 ± 5.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥5x10^3-5x10^2</td>
<td>16 (13-20)</td>
<td>16.5 ± 6.4</td>
<td></td>
</tr>
<tr>
<td>≥5x10^2</td>
<td>16 (13-20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Three 10 colors tubes. Any detectable level considered positive.
• Median positives: 1% (range 0.004-7.6%)
Take home messages

- MRD feasible in flow cytometry
- Rapid and available at bedside
- Current significant threshold <10^{-4}
- \(\Rightarrow \text{lower than } 10^{-5} \) easily accessible when no event is detected
- If events detected 10 to 20
- Early response is the key!
Acknowlegements

- GEIL
- EGIL
- ELN WP10
- EHA SWG Diagnostics